Deni Lyall, Winning Performance Associates Ltd: Coaching and Applied Neuroscience
Blog Home All Blogs View this Member's Profile
My intention with this blog is to share with you things that I am finding out about neuroscience that I feel may help your coaching practice. In 2015 I took the Association of Coaching’s “The Science of the Art of Coaching” Programme which I loved. It introduced me to a whole new world of exciting research and the possibility as a coach to really uplift my practice. It was out of this programme that I decided to start my doctorate. So why the doctorate? Three things really, I read a lot and I love turning my reading or any new understanding into practical uses that help my coachees. Also I was at a stage where I was saddened that some coachees seemed unable to embrace what others do willingly and yet excited about the possibility of enabling some change for them towards that goal. The prospect of being able to make a difference for coaching and coachees through using the emerging neuroscience really excited me. www.winningperformance.co.uk/blog

 

Search all posts for:   

 

Top tags: coaching  applied neuroscience  Neuroscience  DProf  Brain  consciousness  doctorate  learning  neuro-hype  #applied neuroscience  #coaching  #compassion  Anxiety  attention  change curve  emotions  Epistemology  neural networks  Neurons  professional doctorate  sleep 

Not for bedtime reading

Posted By Deni Lyall, Winning Performance Associates Ltd, 29 March 2018

I’ve just read ‘Why we sleep’ by Matthew Walker. On the back cover it has the usual ‘OTT quotes to grab your attention’ although with this book I’ve had to retract somewhat on that comment. O’Connell (Guardian) says ‘it’s been an eye opener’ and now I am agreeing with him. McConnachie (Sunday Times) says ‘you’ll never think of your bedtime in the same way again’ and again for me, he’s right.

The book is an absorbing and sobering read.

It has a lovely balance between being readable and yet giving neuroscience or other hard-hitting facts. When I picked it up, I read 120 pages that day as it was fascinating. It was a little bit repetitious but methodically works it way through explaining various aspects and then various consequences. The underlying theme is that we are designed for a different way of life than we currently live and there are consequences to that.

My lasting thought is whether mobiles phones and tablets are the equivalent of 21st century cigarettes: Addictive and carcinogenic.

He talks about how sleep is one of the most stupid things nature could allow us to do as we are so vulnerable, especially when paralysed in REM sleep. Therefore, it must be incredibly valuable. However, he also talks about how with ‘earlier risers’ and ‘night owls’, a group of people can effectively spread who is awake across 20 hours thus only being totally vulnerable for 4 hrs. It also means that for us night owls, early mornings required for work and school are not that healthy. Interestingly, dolphins rest (sleep) each hemisphere of their brain separately so that one half is awake and keeps them alive – being totally asleep underwater isn’t a good option. The info on birds made me smile. For birds that roost together in a line, say on a telegraph wire, everyone gets a full sleep except the ones at each end. They need to keep their outer eye, and therefore opposite brain hemisphere, awake to watch out for predators. So, half way through the night they supposedly turn around by 180o so that they can rest the other half of their brain.

I hadn’t realised that sleep is driven by 3 facets: The circadian rhythm which is our 24hr 15min clock rises and falls twice a day which is why we have a lull around 3pm and 3am. Melatonin release is triggered as the light goes down and is the signal to the rest of the brain to shut down for sleep. Walker has a lot to say about the effects of being on electronic devices, LED lighting and general bright lighting and how much that delays this trigger happening. As the morning light rises the Melatonin concentration reduces and we wake up. So, if you are feeling groggy in the morning then bright light is useful but, in the evening, lower level or mood light is much better. This is one thing I have changed as a result of reading this book – I use lamps or use fewer lights and resist the urge to have brightly lit rooms. I also have the blue light filters on my electronic devices and being strict about switching the m off around 8pm. Even reading on a tablet will push out the melatonin effect verses reading a paper book.

The third item is a chemical called Adenosine which I hadn’t heard of before. Basically, Adenosine starts building up from the point you wake up. Its effect is to build up an ‘urge to sleep’. The longer you are awake the more pressure it puts on you to sleep which is why you start to feel tired after 16hrs awake. Then when you get 8hrs sleep the Adenosine is flushed out from the brain and you wake up refreshed. Any less sleep time and some of the Adenosine remains so that next day you have a higher starting level of it already and thus feel tired more quickly. There appears to be a lot of evidence for the effects of 6 or less hours sleep which he says is effectively self-euthanasia. (He’s very passionate about sleep.)

He covers how learning, memory and cogitative abilities are enhanced or impaired with sleep. This couples with the information in ‘Anxious’ as the proteins that build long-term memory need 4-6hrs to do so either through sleeping or through being more relaxed after learning something otherwise the process is interrupted. A thought for L&D people perhaps.

He quite graphically covers how lack of sleep kills you and a number of the various sleep conditions. Narcolepsy sounds terrible. One aspect is that the switch, which fully paralyses you during REM sleep (except your eyes), is faulty so that with any heightened emotion or startlement it flicks on and at that instance your body paralyses itself. Not a good outcome if you are up a ladder or swimming. Apparently, these people learn to nullify their emotions in order to reduce this happening.

He goes on to talk about how to get a decent night’s sleep (p291) and how to do that sensibly. I have to say having followed one or two relevant items for me, I am getting off to sleep much better these days and I am much more committed to doing that having read this book.

On a lighter note, a colleague sent me through this YouTube video, which covers everything you need to know about the brain and it is hilarious.

And on a final note, at Cambridge University’s 30th Neuroscience Day I attended earlier this month, there was a research poster talking about how their ‘findings show that recalling more specific positive memories has long-lasting effects on cortisol and mood’ (reducing and enhancing respectively). This gives me more conviction when advocating this type of exercise to coachees.

I am off now to set-up the login to my new University Moodle website – 6 months after leaving the other one! Puts swapping banks or internet providers into context.

Tags:  coaching  doctorate  neuroscience  sleep 

PermalinkComments (2)
 

What do team building exercises and the brain have in common?

Posted By Deni Lyall, Winning Performance Associates Ltd, 04 September 2017
Updated: 04 September 2017

Well it is just over 4 months since I initially submitted my Research Project proposal which seems ages ago. It's 6 weeks since I resubmitted it, hopefully having addressed their conditions and I am chasing things as well now as I am less convinced about the rigour of their processes. 'Turnitin' seems to be a black hole that just checks how much of your work is copied from others. I love it when it picks out a phrase like "reaching their potential" and then cites it in some random person's website. This means that you have to go through and see how much of the 18% 'copied' words you need to worry about. On the upside, it has meant that since mid-July I have been able to focus on the bit I love, the neuroscience, rather than writing academic stuff.

I am another 100 pages through the text book and it is fascinating. I have learned about how neurons (probably) grow towards where they need to go as well as learning about all the sensory systems. I am glad I have an electrical engineering degree as I can understand the electrical circuits used within neural firing and their oscillations. Although I never thought I'd have to brush up on this through being a coach.

I like the little side bits I am discovering such as chillies are 'hot' because they activate the same receptors as 'bad heat' (>43oC) which means we quickly do something about it and don't eat too much. I am assuming this is because in large amounts those chemicals are unhealthy for us. Likewise, menthol activates the cool temperature receptor so it corresponds to our 'cool' sensation. I suppose the larger debate is around what do we define as 'hot' and 'cold' as they are human interpretations. Although very hot and very cold both feel like a 'burning' sensation which is probably our word for the 'my cells are being destroyed' feeling which is what it comes down to.

In reading about the senses, I get a picture of how each one is so well tuned for the particular aspect that it needs to be alerted to in order for us to survive. So, for vision there are a lot of neural networks to do with edges as these help with movement and speed of movement. Also edges help us see predators hiding. Then there is colour which helps us see what is ok to eat and what is not, as well as predators hiding. It has made me wonder whether very tidy people who are nervous are tidy as it reduces edges and makes the edges aligned. Both of these would make it easier to see threats. Although they are not consciously doing it for those reasons I wonder if that is the underlying survival rationale.

Strengthening the 'reasoning' ability of the neural system feels like a useful thing do as it helps the brain to control emotional reactions before they get out of control. Also, I wonder how much more we'd get done at work if there was less fear and anxiety around. Maybe in 100 years that will be the role of a leader or HR.

With sight and sound, spatial maps are recreated in the brain. Visually there appears to be a mapping of retinal receptors to the same layout in the brain. This means neurons from the retina must end up in the same order in the visual cortex and it is amazing how it is thought that they do this. In many ways, it is very simple as they use a lot of chemical repulsion and attraction although given the number of neurons this means that the difference in that is quite subtle.

For example (in a simplistic way), if you had 100 neurons from the left to right side of the retina and the one at the furthest left had the most of Chem A, say 100%. Then the one furthest to the right would have the least amount, say 1%. Each neuron in between from left to right would go from 99% to 2% in a downwards gradient. The neurons they need to connect to, further along pathway towards the brain, also go from left to right but have Chem B with a 1% to 100% upwards gradient from left to right (the opposite way around). If Chem A and B repel each other, then the one with most Chem A (furthest left) will end up connected to the one with least Chem B (furthest left) and so forth. Thus, the neurons connect left to right as they were in the retina, maintaining the spatial representation.

Smell is different. In a frog experiment it appears that a coding system is used. Each odour has a unique neural firing pattern using the same set of neurons (which neuron and with what level of activation). Therefore, you can detect many different smells using fewer neurons and, for odour, a map is less useful than being able to detect lots and lots of different smells. So the brain has to decide how best to use its finite resources and each system seems very well honed to its work.

The ears turn sound waves into movement by using lots of little hairs inside them. The hairs are different heights, like pan pipes, and at the top of each hair is a 'lidded' opening. The 'lid' has a 'string' connected to the taller hair behind it. When sound moves the hairs, the tops of them move further apart thus the 'string' pulls the 'lid' open and ions enter to enable depolarisation. Movement using the ear canals, is similar although fluid and calcium granules create the hair movement. Should I be amazed or concerned as it's a bit like a team building exercise solution but without bake bean tins.

Next time I'll talk about neural oscillations and complex systems as these also seem relevant to 'the self' conversation and my DProf.

Tags:  applied neuroscience  brain  coaching  doctorate  neural networks 

PermalinkComments (0)
 


 

Website Sponsors